Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland

Broda M., Popescu C.-M., Timpu D.I., Rowiński D., Roszyk E. (2021). Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland. Materials 14, 7632.

Large amounts of archaeological wood are often excavated during groundworks in cities and towns. Part of the unearthed artefacts is usually saved, conserved and then presented in museums. However, if the finding contains several similar objects, some of them could potentially be further employed for some other practical purposes. The research aimed to determine the mechanical performance of the remains of wooden water mains excavated at Bóżnicza street in Poznań, Poland and evaluate its potential usefulness for any practical purposes. First, wood density was determined along with its mechanical strength in compression. The density of archaeological wood identified as Scots pine was lower than contemporary pinewood (383 kg × m−3 vs. 572 kg × m−3); therefore, its mechanical properties in compression tests were also lower, as expected, making the wood unsuitable for any practical applications. However, the differences in modulus of elasticity and compressive strength were not justified by the differences in wood density. Further infrared spectroscopy and X-ray diffraction analyses revealed additional differences in chemical composition and cellulose crystallinity between archaeological and contemporary wood. The results indicated the decrease in carbohydrate content and cellulose crystallinity in degraded wood, which, in addition to wood density, apparently contribute to the deterioration in mechanical strength of archaeological wood. The case study of the excavated archaeological wooden pipes shows that they have historical value but are not useful for practical purposes. It also revealed that not only wood density but also its chemical composition and cellulose crystallinity level has a substantial impact on the wood mechanical properties, particularly in compression.

https://doi.org/10.3390/ma14247632

Keywords: archaeological wood, water mains, mechanical properties, wood degradation, FT-IR, XRD, cellulose crystallinity, cellulose, infrared spectroscopy, compression strength